Get Defense Update News
on your Phone!

Add to my Widsets

Relevant Links:


Tactical Image and Intelligence Exploitation Systems (2)

Systems covered in this report: (back to page 1)

MWIR Compact Modular Imager from L3

L3 Communications developed a Compact Modular Imager (CMI) utilizing a 20µm 640x512 Indium Antimonide (InSb) Medium Wave Infrared (MWIR) focal plane array (FPA) operating in the 3.6 – 4.95 µm spectral band . To take full advantage of the new FPA, a new linear dewar cooler design was incorporated offering over 10,000 hours of operation. The sensor is mounted in a rugged open frame module enabling simple integration into multisensor payloads and weapon platforms. The sensor provides 14bit real-time digital data output at up to 60Hz frame rate and uses standard RS422 serial interface for full remote operation. According to L3 Com, higher frame rates are achieved using an addressable window mode. The FLIR has a C)2 notch filter to minimize atmospheric interference to further enhance the MWIR performance in high humidity conditions.

Laser Illuminated Cameras Extend the Soldier's Vision

As the demand for imagery is increasing, users require better vision, from longer range under the most difficult conditions, as sensors are challenged by sharp contrasts, low light levels, obstruction and interference. As specialist in high performance digital imaging systems, Intevac Inc. is offering a line of digital image intensifiers (DI2) and laser illuminated viewing and An infrared camera based on the Digital Image Intensifier (right) from Intevac. Phto: Tamir Eshelranging systems, addressing the needs for compact, high performance vision at the tactical level. The E3010M DI2 is a self contained sensor module specifically designed for integration into imaging systems such as head or helmet mounted displays, rifle sights and small EO/IR surveillance systems. The sensor incorporates a compact, integrated element ensemble, including an SXGA (1280x1024 pixel) electron-bombarded CMOS sensor, high voltage power supply, low voltage power supply, FLASH memory (which also contains image correction parameters). The sensor operates in the 500-900 nm band (GEN II GaAs photocathode) and has a dynamic range supporting 'twilight to starlight' conditions. It can also work in daylight condition while the high voltage is switched off, operating in the Near IR (NIR) band.

Comparison of infrared camera and Laser Illuminated Viewing and Ranging (LIVAR) camera, both pictures are taken from a range of 600 meters. LIVAR uses Short Range Infrared enhanced with laser illumination, to deliver a detailed, sharp image  under dificult lighting conditions. Image: Intevac.
Intevac is also introducing the Laser Illuminated Viewing And Ranging (LIVAR) - Short Wave IR (SWIR) based cameras, integrated with a laser illuminator to form a long-range viewing and ranging system, that can work in parallel t a FLIR device. SWIR sensors can effectively penetrate battlefield osbcurants, windshields and windows, in day and night, overcoming many of the limitations that earlier systems demonstrated when operating in asymmetric warfare scenarios. In an integrated FLIR/SWIR/LIVAR system, the FLIR is used as the primary sensor for threat detection, spotting a potential target at long range. As the target gets within the LIVAR range, the system sets the gate range for target location and then provides high-resolution digital stream of images for positive combat identification Using range-gated laser illumination, the system contributes to positive stand-off combat identification and high resolution imagery.

The laser operates in 'eyesafe' wavelength band. LIVAR 500 is designed as a compact integrated sensor, for integration in mounted or dismounted applications. The LIVAR 500 uses a TE Photocathode (EBCMOS) focal plane array with 640x480 element matrix with spectral response range of 950-1650 nm.

Medium Range EO Infrared sensor System (MREO) for FCS Vehicles

The Medium Range EO Infrared sensor System (MREO) will be used on the manned combat system (MCS) and Infantry Carrier Vehicle (ICV), as well as the armed robotic vehicle – assault light (ARV-A-L) unmanned system. It will provide the 'eyes' of the ground-based platform. This stabilized, day/night networked multi-sensor includes a mid-wave thermal imager (MWIR), color/low-light TV and laser illuminated imager. The MWIR sensor is based on L3 communications' 640x512 matrix, 20 micron dual-aperture IR camera. The system has a three-axis stabilization in pitch, roll and yaw, maintaining stable line of sight while on the move, or when elevated on a mast, remotely controlled by the crew or via the vehicle's network communications, by external platforms or dismounted soldiers. The operator can control the system manually, as imagery from the sensor, with video from color daylight or low-light video monitored on the vehicle's user screens. The image is presented in high resolution over a panoramic, medium/narrow and super narrow FOV.

The multifunction laser can assists the crew in long range target identification (supported MWIR laser gated imaging). As a multi-function laser it also provides rangefinding and target designation; the system provides far target locations (FTL) of all targets tracked by the system. It provides target location and designation for on-board weapons as well as external effects. In an automatic mode the system feeds the thermal and visible imagery to the automatic aided target recognition (AiTR) processor, which classifies and prioritizes the imagery to highlight multiple air and ground targets, discriminated and tracked under all weather and visibility conditions. The MREO sensor can be mounted on the turret surface or elevated on a telescopic mast.

Being part of the planned 2nd and 3rd 'SpinOut' phases, MREO is expected to become a standard sensor package to be fielded throughout the U.S. Army's tactical mobile units in the next decade. The system uses the modular, miniaturized Common Electro-Optical Electronics Unit (CEEU) for image processing and control. This COTS based processor provides automatic tracking, interface the sensor, vehicle's systems and on-board C4ISR systems, range, positioning and geo-location, as well as image recording, storage and distribution services. Another module, handling the systems power intensive functions is the power and servo controller.